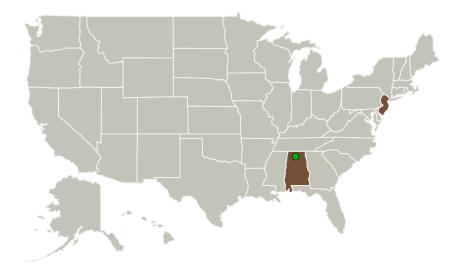
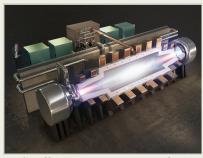
High Efficiency RF Heating for Small Nuclear Fusion Rocket Engines, Phase I



Completed Technology Project (2017 - 2018)


Project Introduction

High power nuclear fusion propulsion systems will require high efficiency radio-frequency heating systems in the MHz range for plasma heating. This proposal is for a novel scalable solid state Class E amplifier using Silicon Carbide switching transistors for plasma heating. This system is potentially 100% efficient compared to 40% for linear amplifiers and can be scaled to any desired size by adding additional segments in parallel. The system includes a novel closed loop feedback control system at the antenna and from the plasma. This eliminates the need for lossy transformers and other non-ideal components. The RF amplifier will be prototyped in Phase I in preparation for a plasma heating experiment in Phase II.

Primary U.S. Work Locations and Key Partners

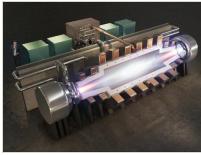
Organizations Performing Work	Role	Туре	Location
Princeton Satellite	Lead	Industry	Plainsboro,
Systems	Organization		New Jersey
Marshall Space Flight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama
Princeton Plasma Physics	Supporting	R&D	Princeton,
Laboratory(PPPL)	Organization	Center	New Jersey

High Efficiency RF Heating for Small Nuclear Fusion Rocket Engines, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer


High Efficiency RF Heating for Small Nuclear Fusion Rocket Engines, Phase I

Completed Technology Project (2017 - 2018)

Primary U.S. Work Locations		
Alabama	New Jersey	

Images

Briefing Chart Image
High Efficiency RF Heating for Small
Nuclear Fusion Rocket Engines,
Phase I Briefing Chart Image
(https://techport.nasa.gov/imag
e/127037)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Princeton Satellite Systems

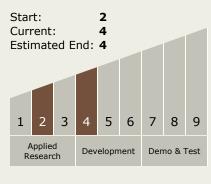
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Michael A Paluszek

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Efficiency RF Heating for Small Nuclear Fusion Rocket Engines, Phase I

Completed Technology Project (2017 - 2018)

Technology Areas

Primary:

- TX01 Propulsion Systems
 TX01.4 Advanced
 Propulsion
 TX01.4.4 Other
 - ☐ TX01.4.4 Other
 Advanced Propulsion
 Approaches

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

